
Nonlocal symmetry generators and explicit solutions of some partial differential equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 4541

(http://iopscience.iop.org/1751-8121/40/17/010)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/17
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 4541–4551 doi:10.1088/1751-8113/40/17/010

Nonlocal symmetry generators and explicit solutions
of some partial differential equations

Maochang Qin

School of Science, Chongqing Technology and Business University, Chongqing 400067,
People’s Republic of China

E-mail: maochlie@126.com

Received 20 December 2006, in final form 1 March 2007
Published 11 April 2007
Online at stacks.iop.org/JPhysA/40/4541

Abstract
The nonlocal symmetry of a partial differential equation is studied in this
paper. The partial differential equation written as a conservation law can be
transformed into an equivalent system by introducing a suitable potential. The
nonlocal symmetry group generators of original partial differential equations
can be obtained through their equivalent system. Further, new explicit solutions
can be constructed from the newly obtained symmetry generators. The Burgers
equation is chosen as an example; many new valuable explicit solutions and
nonlocal symmetry generators are presented.

PACS numbers: 02.30.Jr, 04.20.Jb

1. Introduction

The symmetry group, introduced by S Lie into the study of differential equations, is an effective
and systematic technique in handling partial differential equations (PDEs). The classical
symmetry group of partial differential equations is the largest local group of transformation acts
on the space of independent and dependent variables with the property that it maps solutions
of partial differential equation into other solutions. The symmetry group is frequently used
in reducing complex PDEs, seeking conservation laws and constructing explicit solutions of
PDEs. The local symmetry group of PDEs can be obtained by requiring that the original
PDEs keep invariant under group transformation. The general method used to calculate the
symmetry group and construct explicit solutions from the symmetry group generators to PDEs
is demonstrated systematically in [1–4]. It should be pointed out that one can use symmetry
groups to find invariant solutions, but the use of symmetries yields more than just invariant
solutions. For example P Olver discusses how to use symmetry groups to obtain solutions in
chapter 2, and invariant solutions in chapter 3, of [1].

The potential symmetry of partial differential equations was considered by Bluman et al
[5, 6]. The potential symmetry generators to PDEs can be obtained by the following step-
by-step method: (1) Attach the invariant surface conditions [7, 8] to undetermined symmetry
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group generators, (2) derive potential symmetry generators determining equations by requiring
that the original PDEs remain invariant under the symmetry transformation, (3) solve potential
symmetry generators from their determining equations. By solving these potential symmetry
generator determining equations, there exists a possibility for one to find new classes of
symmetry generators for the given PDEs. These new symmetry generators are neither classical
Lie symmetry group generators nor Lie–Bäcklund transformation. They are no longer local
symmetry generators, but nonlocal symmetry generators. All local symmetry group of PDEs
can be determined by the Lie algorithm, but no corresponding algorithm exists which can be
used to find all nonlocal symmetry of a given PDE.

For the sake of finding the nonlocal symmetry generators of partial differential equations as
a conservation law, some new undetermined auxiliary functions are introduced unavoidably.
This results in two disadvantages. One is the tedious computation in solving symmetry
group generators from their determining equations. The other is the difficulty of seeking
explicit solutions from these newly obtained symmetry group generators. In this paper, some
appropriate amelioration has been made. In order to lessen the calculations in the process of
seeking nonlocal symmetry generators, we require that some symmetry infinitesimal generator
coefficient functions do not depend on the added unknown functions explicitly. In the course
of constructing explicit solutions from the newly obtained symmetry generators, only part
of the characteristic equation is chosen from the symmetry infinitesimal generator. In what
follows, the Burgers equation is used as an example to illustrate our work. Vinogradov and
Krasil’shchik find a nonlocal symmetry for the Burgers equation, and they deduce the Hopf–
Cole transformation by using invariant solutions in [9]. This is the very first paper in which
solutions invariant under nonlocal symmetries are considered and shown to be useful. A
rigorous geometric theory of nonlocal symmetries has been developed by Krasil’shchik and
Vinogradov (see chapter 6 of [10]).

2. Nonlocal symmetry generators and explicit solutions

In this section, we study the nonlocal symmetry of the Burgers equation of the following form:

ut + uux − uxx = 0. (1)

The associated equivalent system to equation (1) is


vx = u,

vt = ux − u2

2
.

(2)

Substituting the first equation of system (2) into the second one, it follows

vt +
v2

x

2
− vxx = 0, (3)

which is called the adjoint integral equation of equation (1). We use nonlocal symmetry
generators of equation (1) to seek new explicit solutions. To this end, let

V = τ(x, t, v)
∂

∂t
+ ξ(x, t, v)

∂

∂x
+ φ(x, t, u, v)

∂

∂u
+ η(x, t, v)

∂

∂v
(4)

be a symmetry group generator depending on the independent variables x and t and the
dependent variables u and v. We need to determine all possible coefficient functions τ, ξ, φ

and η. The corresponding one-parameter group exp(εV ) is a symmetry group of system (2).
It should be pointed out that, in order to find potential or nonclassical potential symmetries of
the equation (1), symmetry generator (4) is usually replaced by

V ∗ = τ(x, t, u, v)
∂

∂t
+ ξ(x, t, u, v)

∂

∂x
+ φ(x, t, u, v)

∂

∂u
+ η(x, t, u, v)

∂

∂v
.
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This will increase the difficulty of seeking symmetry generators from their determining
equations and constructing explicit solutions from the newly obtained symmetry generators.
According to the classical symmetry group theory, the symmetry determining equations for
system (2) are 


ηx + vxηv − vt (τx + vxτv) − vx(ξx + vxξv) = φ,

ηt + vtηv − vt (τt + vtτv) − vx(ξt + vtξv) = φx

+ uxφu + vxφv − ut (τx + vxτv) − ux(ξx + vxξv) − uφ.

(5)

Since we are interested in finding explicit solutions which are invariant under the one-parameter
group exp(εV ), we combine equation (1), the associated, equivalent system (2), the adjoint
integral equation (3) and invariant surface conditions {τut + ξux = φ, τvt + ξvx = η}; it
follows 


ux = u2

2
+

1

τ
(η − uξ),

ut = φ

τ
− ξ

τ

[
u2

2
+

1

τ
(η − uξ)

]
.

(6)

Substituting (6) into the first one of equations (5), we obtain

φ = ηx − η

τ
τx + u

(
ηv − ξx +

ξ

τ
τx − η

τ
τv

)
+ u2

(
ξ

τ
τv − ξv

)
. (7)

Substituting (6) and (7) into the second equation of equations (5), we calculate

ηt +
η

τ
(ηv − τt ) − uξ

τ
(ηv − τt ) − 1

τ 2
(η2 − 2uξη + u2ξ 2)τv − uξt = Cx + uBx + u2Ax

+

[
u2

2
+

1

τ
(η − uξ)

]
(B + 2uA) + u(Cv + uBv + u2Av) − u(C + uB + u2A)

−
{

C + uB + u2A

τ
− ξ

τ

[
u2

2
+

1

τ
(η − uξ)

]}
(τx + uτv)

−
[
u2

2
+

1

τ
(η − uξ)

]
ξx − u3

2
ξv (8)

with the functions A = ξ

τ
τv − ξv, B = ηv − ξx + ξ

τ
τx − η

τ
τv and C = ηx − η

τ
τx . Since the

coefficients of the algebraic quadratic equation (8) is independent of u, equating the coefficients
of u’s powers on both sides of equation (8) and using the arbitrariness of u, we obtain



Av − τv

τ
A +

A

2
= 0,

Ax + Bv − 2ξ

τ
A − A

τ
τx +

ξ

2τ
τx − B

τ
τv − ξx

2
− B

2
= 0,

ξ

τ
(ηv − τt ) − ξη

τ 2
τv + ξt + Bx + Cv +

2η

τ
A

− ξ

τ
B − ξ 2

τ 2
τx − B

τ
τx − τv

τ
C +

ξ

τ
ξx − C = 0,

ηt +
η

τ
(ηv − τt ) − η2

τ 2
τv − Cx − η

τ
B +

C

τ
τx − ξη

τ 2
τx +

η

τ
ξx = 0.

(9)

Solving the symmetry generator coefficient functions τ, ξ and η from equations (9) and
substituting them into (7) to calculate the coefficient function φ, we can obtain the nonlocal
symmetries of equation (1). It seems to be more difficult to solve equations (9) than
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equation (1) itself, but some special solutions can be derived. We set the symmetry generator
coefficient function τ = 1 in the following discussion.

Firstly, supposing the symmetry generator coefficient function ξ = ξ(t), then we have
A = 0, B = ηv and C = ηx . In this case because the coefficients ξ, φ and η do not depend
on v, we cannot obtain the nonlocal symmetry generator and new explicit solutions different
from those obtained by using the classical symmetry of the adjoint equation (3).

Secondly, supposing the symmetry generator coefficient function ξ = ξ(x), we have
functions A = 0, B = ηv − ξx and C = ηx . Substituting this into equations (9), it follows

η = 2α1(x, t) exp
(v

2

)
+ β(x, t), (10)

and 


ξxx − 2ξξx + βx = 0,

2(α1t − α1xx + 2α1ξx) exp
(v

2

)
= 0,

βt − βxx + 2βξx = 0.

(11)

Integrating the first equation of equations (11) with respect to the variable x, the following
three cases need to consider according to the different choice of the integrating constant.

Case A. Choose k2 as an integral constant. Combining the first and third equations of
equations (11), we can deduce{

β = ξ 2 − ξx + k2,

ξxxx − 2ξξxx − 4ξ 2
x + 2ξ 2ξx + 2k2ξx = 0.

(12)

Solving equations (12), we can derive the following nontrivial special solutions:
ξ1 = a tan a(x + c) − b

2
, β1 = −ba tan a(x + c), α1 = κβ1,

ξ2 = 3a1 tan a1(x + c), β2 = 2a2
1[3 tan2 a1(x + c) + 1], α2 = κβ2,

(13)

where a =
√

b2+4k2

2 , a1 = k√
5
, b, c and κ are arbitrary constants.

Case B. With the choice of −k2 as an integral constant, from equations (11), we can obtain{
β = ξ 2 − ξx − k2,

ξxxx − 2ξξxx − 4ξ 2
x + 2ξ 2ξx − 2k2ξx = 0.

(14)

From equations (14), we acquire the following nontrivial special solutions:


ξ̃1 = a2 tan a2(x + c) − b1

2
, β̃1 = −b1a2 tan a2(x + c), α̃1 = κβ̃1,

ξ̃2 = −a3 coth a3(x + c) − b2

2
, β̃2 = b2a3 coth a3(x + c), α̃2 = κβ̃2,

ξ̃3 = −3a1 tanh a1(x + c), β̃3 = 2a2
1[3 tanh2 a1(x + c) − 1], α̃3 = κβ̃3,

ξ̃4 = −3a1 coth a1(x + c), β̃4 = 2a2
1[3 coth2 a1(x + c) − 1], α̃4 = κβ̃4,

ξ̃5 = 1

c0 − x
± k, β̃5 = ± 2k

c0 − x
, α̃5 = κβ̃5.

(15)

Here |b1| � 2k, |b2| � 2k, a2 =
√

b2
1−4k2

2 , a3 =
√

4k2−b2
2

2 , and c0 is arbitrary.

Case C. Setting the integral constant equal to zero, from equations (11), we can derive{
β = ξ 2 − ξx,

ξxxx − 2ξξxx − 4ξ 2
x + 2ξ 2ξx = 0.

(16)
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By equations (16), we can derive the following nontrivial special solutions:


ξ̄1 = b3

2

(
tan

b3

2
(x + c) − 1

)
, β̄1 = −b2

3

2
tan

b3

2
(x + c), ᾱ1 = κβ̄1,

ξ̄2 = −3

x + c
, β̄2 = 6

(x + c)2
, ᾱ2 = κβ̄2,

(17)

where b3 is an arbitrary nonzero constant.
From (13), (15) and (17), we can derive nine sets of nonlocal symmetry generators of

the Burgers equation. In what follows, we will consider explicit solutions from the nonlocal
symmetry generators.

1. Setting the coefficient function ξ = a tan a(x + c)− b
2 , β = α = −ba tan a(x + c), and

substituting this into (10) and (7), we have

V1 = ∂

∂t
+

[
a tan a(x + c) − b

2

]
∂

∂x
− ba tan a(x + c)

(
2 e

v
2 + 1

) ∂

∂v

− [
ab e

v
2 (2a sec2 a(x + c) + u tan a(x + c)) + a2 sec2 a(x + c)(b + u)

] ∂

∂u
. (18)

Neither using the classical symmetry method nor using the nonclassical symmetry method is
difficult to solve functions u, v directly from (18). We select

dt

1
= dx

a tan a(x + c) − b
2

= dv

−ba tan a(x + c)
(
2 e

v
2 + 1

) . (19)

Solving equation (19), we have two independent integrals


ζ = t − 2

4a2 + b2
[−bx + 2 ln |2a sin a(x + c) − b cos a(x + c)|],

−2b[2a2x + b ln|2a sin a(x + c) − b cos a(x + c)|]
4a2 + b2

+ 2 ln
(
2 + e− v

2
) = f (ζ ).

(20)

In order to construct explicit solutions, the unknown function f (ζ ) can be determined by


− vt e− v
2

2 + e− v
2

= ∂ζ

∂t

df

dζ
= f ′,

−2ab tan a(x + c)

2a tan a(x + c) − b
− vx e− v

2

2 + e− v
2

= ∂ζ

∂x

df

dζ
= f ′ −2

2a tan a(x + c) − b
,

2a2b2 sec2 a(x + c)

(2a tan a(x + c) − b)2
−

(
vxx − v2

x

2

)
e− v

2

2 + e− v
2

− 1

2

(
vx e− v

2

2 + e− v
2

)2

= 4f ′′ + 4a2 sec2 a(x + c)f ′

(2a tan a(x + c) − b)2
.

(21)

In view of the adjoint equation (3), from equations (21), we deduce f (ζ ) satisfying

f ′′ +
f ′2

2
+

(
a2 − b2

4

)
f ′ − a2b2

2
= 0. (22)

The general solution of equation (22) is f (ζ ) = b2ζ

2 + 2 ln
(−2 c2−c1 e− (4a2+b2)ζ

4

4a2+b2

)
. Substituting

this into equations (20), we arrive at

v = −2 ln
(
e

b2 t+2bx
4

(
2c1 e− (4a2+b2)t+2bx

4 (2a cos a(x + c) − b sin a(x + c))

− 2c2
) − 2(4a2 + b2)

)
+ 2 ln(4a2 + b2). (23)
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From (23), we calculate the derivative of v with respect to x

vx = e
b2 t+2bx

4
[
2ac1 e− (4a2+b2)t+2bx

4 (b sin a(x + c) + 2a sin a(x + c)) − bc2
]

c2 e
b2 t+2bx

4 − c1 e−a2t (2a sin a(x + c) − b cos a(x + c)) + 4a2 + b2
. (24)

It is easy to verify that (24) is a new explicit solution of the Burgers equation (1).
2. With the choice of ξ = 3a1 tan a1(x + c) and β = α = 2a2

1(1 + 3 tan2 a1(x + c)),
substituting these into (10) and (7), we derive

V2 = ∂

∂t
+ 3a1 tan a1(x + x0)

∂

∂x
+ 2a2

1(1 + 3 tan2 a1(x + c))
(

2 exp
(v

2

)
+ 1

) ∂

∂v

+

[
(12a1 tan a1(x + c) sec2 a1(x + x0) + (1 + 3 tan2 a1(x + c))u)2a2

1 exp
(v

2

)

+ (4a1 tan a1(x + x0) − u)3a2
1 sec2 a1(x + x0)

]
∂

∂u
. (25)

From the nonlocal symmetry generator (25), we consider

dt

1
= dx

3a1 tan a1(x + c)
= dv

2a2
1(1 + 3 tan2 a1(x + c))

(
2 exp

(
v
2

)
+ 1

) . (26)

Solving equation (26), we have


ζ1 = t − 1

3a2
1

ln(sin a1(x + c)),

2

3
ln(sin a1(x + c)) − 2 ln(cos a1(x + c)) + 2 ln

(
2 + exp

(
−v

2

))
= f (ζ1).

(27)

This time we can claim that the undetermined function f (ζ1) satisfies

f ′′ +
f ′2

2
+ 5a2

1f
′ + 8a4

1 = 0. (28)

Solving equation (28), we have f (ζ1) = −8a2
1ζ1 +2 ln

(
c1 e3a2

1ζ1 −c2
)
+2 ln

(
6a2

1

)
. Substituting

f (ζ1) into equations (27), we obtain

v = −2 ln
(
e−4a2

1 t cos a1(x + c)
(
c1 e3a2

1 t − c2 sin a1(x + c)
) − 12a2

1

)
+ 2 ln

(
6a2

1

)
. (29)

From (29), the derivative of v with respect to x is

vx = 2
a1 e−4a2

1 t (cos a1(x + c)c1 e3a2
1 t + c2 cos 2a1(x + c))

c1 e−a2
1 t cos a1(x + c) − c2 e−4a2

1 t cos a1(x + c) sin a1(x + c)) − 12a2
1

, (30)

which is a new explicit solution of equation (1).
3. With the choice of ξ = −3a1 tanh a1(x + c) and β = α = 2a2

1[3 tanh2 a1(x + c) − 1],
we derive

V3 = ∂

∂t
− 3a1 tanh a1(x + c)

∂

∂x
+ 2a2

1[3 tanh2 a1(x + c) − 1]
(
2 e

v
2 + 1

) ∂

∂v

+
[
2a2

1 e
v
2 (12a1 tanh a1(x + c)sech2a1(x + c) + u(3 tanh a1(x + c) − 1))

+ 3a2
1sech2a1(x + c)(4a1 tanh a1(x + c) + u)

] ∂

∂u
. (31)

Similarly, from the symmetry generator (31), we consider

dt

1
= dx

−3a1 tanh a1(x + c)
= dv

2a2
1(3 tanh2 a1(x + c) − 1)

(
2 e

v
2 + 1

) . (32)
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Solving equation (32), we have


ζ3 = t +
1

3a2
1

ln(sinh a1(x + c)),

2

3
ln(sinh a1(x + c)) − 2 ln(cosh a1(x + c)) + 2 ln

(
2 + e− v

2
) = f (ζ3).

(33)

This time the undetermined function f (ζ3) satisfies

f ′′ +
f ′2

2
− 5a2

1f
′ + 8a4

1 = 0. (34)

The general solution is f (ζ3) = 2a2
1ζ3 + 2 ln

(
c1 e3a2

1ζ3 − c2
)− 2 ln

(
6a2

1

)
. Combining this with

equations (33), it follows

v = −2 ln
(
ea2

1 t cosh a1(x + c)
(
c1 e3a2

1 t sinh a1(x + c) − c2
) − 12a2

1

)
+ 2 ln

(
6a2

1

)
. (35)

From (35), the derivative of v with respect to x is

vx = 2
a1 ea2

1 t
(
c1 e3a2

1 t (1 − cosh2 a1(x + c)) + c2 sinh a1(x + c)
)

c1 e4a2
1 t cosh a1(x + c) sinh a1(x + c) − c2 ea2

1 t cosh a1(x + c)) − 12a2
1

, (36)

which is a new explicit solution of equation (1).
4. With the choice ξ = −3a1 coth a1(x + c) and β = α = 2a2

1[3 coth2 a1(x + c) − 1], we
have

V4 = ∂

∂t
− 3a1 coth a1(x + c)

∂

∂x
+ 2a2

1[3 coth2 a1(x + c) − 1]
(
2 e

v
2 + 1

) ∂

∂v

+
[
2a2

1 e
v
2 (−12a1 coth a1(x + c)csch2a1(x + c) + u(3 coth a1(x + c) − 1))

− 3a2
1csch2a1(x + c)(4a1 coth a1(x + c) + u)

] ∂

∂u
. (37)

From the symmetry generator (37), we think of the following characteristic equation:

dt

1
= dx

−3a1 coth a1(x + c)
= dv

2a2
1(3 coth2 a1(x + c) − 1)

(
2 e

v
2 + 1

) . (38)

Solving equation (38), we obtain


ζ4 = t +
1

3a2
1

ln(cosh a1(x + c)),

2

3
ln(cosh a1(x + c)) − 2 ln(sinh a1(x + c)) + 2 ln

(
2 + e− v

2
) = f (ζ4).

(39)

The undetermined function f (ζ4) satisfies

f ′′ +
f ′2

2
− 5a2

1f
′ + 8a4

1 = 0. (40)

The general solution is f (ζ4) = 2a2
1ζ4 + 2 ln(c1 e3a2

1ζ4 − c2) − 2 ln
(
6a2

1

)
. Substituting f (ζ4)

into equations (39), we obtain

v = −2 ln
(
ea2

1 t sinh a1(x + c)(c1 e3a2
1 t cosh a1(x + c) − c2) − 12a2

1

)
+ 2 ln

(
6a2

1

)
. (41)

From (41), the derivative of v with respect to x is

vx = 2
a1 ea2

1 t
(
c1 e3a2

1 t (1 − cosh2 a1(x + c)) + c2 cosh a1(x + c)
)

c1 e4a2
1 t cosh a1(x + c) sinh a1(x + c) − c2 ea2

1 t sinh a1(x + c)) − 12a2
1

, (42)

which is a new explicit solution of equation (1).
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5. With the choice of ξ = −a3 coth a3(x + c) − b2
2 , and β = α = b2a3 coth a3(x + c), we

derive the following nonlocal symmetry generator:

V5 = ∂

∂t
−

[
a3 coth a3(x + c) +

b2

2

]
∂

∂x
+ a3b2 coth a3(x + c)

(
2 e

v
2 + 1

) ∂

∂v

+
[
a3b2 e

v
2 (u coth a3(x + c) − a3cscha3(x + c))

− a2
3 csch2a3(x + c)(b2 + 3u)

] ∂

∂u
. (43)

From the symmetry generator (43), we think of the characteristic equation

dt

1
= dx

−a3 coth a3(x + c) − b2
2

= dv

a3b2 coth a3(x + c)
(
2 e

v
2 + 1

) . (44)

Solving equation (44), we have


ζ5 = t +
2

b2
2 − 4a2

3

(b2x − 2 ln(|2a3 cosh a3(x + c) + b2 sinh a3(x + c))),

2b2

b2
2 − 4a2

3

(
2a2

3x − b2 ln
(|2a3 cosh a3(x + c) + b2 sinh a3(x + c)

))
+ 2 ln

(
2 + e− v

2
) = f (ζ5).

(45)

This time we can deduce the undetermined function f (ζ5) which satisfies

f ′′ +
f ′2

2
−

(
a2

3 +
b2

2

4

)
f ′ +

a2
3b

2
2

2
= 0. (46)

Solving equation (46), we have f (ζ5) = b2
2

2 ζ5 + 2 ln
(
2c2 − 2c1 e

4a2
3−b2

2
4 ζ5

) − 2 ln
(
4a2

3 − b2
2

)
.

Substituting f (ζ5) into equations (45), we obtain

v = −2 ln
(
e

b2
2 t+2b2x

4
(
2c2 − 2c1 e

(4a2
3−b2

2 )t−b2x

4 (2a3 sinh a3(x + c) + b2 cosh a3(x + c))
)

− 8a2
3 + 2b2

2

)
+ 2 ln

(
4a2

3 − b2
2

)
. (47)

From (47), the derivative of v with respect to x is

vx = −1

2

e
b2

2 t+2b2x

4
(−c2b

2
2 + 4c1a

2
3 e

(4a2
3−b2

2 )t−b2x

4 (2a3 cosh a3(x + c) + b2 sinh a3(x + c))
)

c1 ea2
3 t (2a3 cosh a3(x + c) + b2 sinh a1(x + c)) − c2 e

b2
2 t+2b2x

4 + 4a2
3 − b2

2

. (48)

This is a new explicit solution of the equation (1).
6. With the choice ξ = −3

x+c
and β ′′ = α′′ = 6

(x+c)2 , we acquire

V6 = ∂

∂t
− 3

x + c

∂

∂x
+

6

(x + c)2

(
2 e

v
2 + 1

) ∂

∂v

+

[
6

(x + c)2
e

v
2

(
u − 4

x + c

)
− 3

(x + c)2

(
u +

4

x + c

)]
∂

∂u
. (49)

From the symmetry generator (49), we only consider the following characteristic equation:

dt

1
= dx

−3
x+c

= dv
6

(x+c)2

(
2 e

v
2 + 1

) . (50)

Solving equation (50), we have
ζ6 = t +

(x + c)2

6
,

−2 ln(x + c) + 2 ln
(
2 + e− v

2
) = f (ζ6).

(51)
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This time we know the unknown function f (ζ6) which satisfies

f ′′ +
f ′2

2
= 0. (52)

The general solution is f (ζ6) = 2 ln(c1ζ5 − c2) − 2 ln 2. Substituting f (ζ6) into
equations (51), we obtain

v = −2 ln

(
(x + c)

(
c1

(
t +

(x + c)2

6

)
+ c2

)
− 4

)
+ 2 ln 2. (53)

From (53), the derivative of v with respect to x is

vx = −2
c1

(
t + (x+c)2

2

)
+ c2

(x + c)
(
c1

(
t + (x+c)2

6

)
+ c2

) − 4
. (54)

This is also an explicit solution of equation (1).
7. With the choice of ξ = 1

c0−x
+ k and β ′′ = α′′ = 2k

c0−x
, we have

V7 = ∂

∂t
+

(
1

c0 − x
+ k

)
∂

∂x
+

2k

c0 − x

(
2 e

v
2 + 1

) ∂

∂v

+

[
2k

c0 − x
e

v
2

(
u +

2

c0 − x

)
− 1

(c0 − x)2
(u − 2k)

]
∂

∂u
. (55)

From the nonlocal symmetry generator (55), we only consider the following characteristic
equation:

dt

1
= dx

1
c0−x

+ k
= dv

2k
c0−x

(
2 e

v
2 + 1

) . (56)

Solving equations (56), we have
ζ7 = t − 1

k
− 1

k2
ln(1 + k(c0 − x)),

−2 ln(1 + k(c0 − x)) + 2 ln
(
2 + e− v

2
) = f (ζ7).

(57)

This time the unknown function f (ζ7) satisfies

f ′′ +
f ′2

2
− k2f ′ = 0. (58)

Solving equation (58), we have the general solution f (ζ7) = 2 ln
(
c1 ek2ζ7 + c2k

2
) − 2 ln k2.

Substituting f (ζ7) into equations (57), we obtain

v = −2 ln
(
c1 ek2t−kx + c2k

2(k(c0 − x) + 1) − 4k2
)

+ 2 ln k2. (59)

From (59), the derivative of v with respect to x is

vx = 2
kc1 ek2t−kx + c2k

3

c1 ek2t−kx + c2k2(k(c0 − x) + 1) − 4k2
. (60)

Another explicit solution of equation (1) is obtained.
Finally, choosing the symmetry generator coefficient function ξ = ξ(x, t), we have

functions A = 0, B = ηv − ξx and C = ηx . Substituting these into equations (9), it follows
that the coefficient function η is determined by (10) and


ξt − ξxx + 2ξξx − βx = 0,

2(α1t − α1xx + 2α1ξx) exp
(v

2

)
= 0,

βt − βxx + 2βξx = 0.

(61)
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Introducing a new variable z = x + k3t (k3 is a nonzero constant), the first and the third
equations of equations (61) can be transformed into{

k3β = ξ 2 − ξz − k3ξ + d,

ξzzz − 2ξξzz − 4ξ 2
z + 2ξ 2ξz + (2d + k3)ξz − (k3 + 1)ξzz + 2(k3 + 1)ξξz = 0,

(62)

where d is an integral constant. By choosing k3 = −1, we only consider the following cases
according to the choice of the integral constant d.

Choosing an integral constant d = k2+1
2 , and using (13), we can deduce the following

nontrivial special solutions:


ξ̂1 = a tan a(x − t) − b

2
, β̂1 = (b − 1)a tan a(x − t) +

b − 1 + k2

2
,

ξ̂2 = 3a1 tan a1(x − t), β̂2 = 3a1 tan a1(x − t)[2a1 tan a1(x − t) +1] +
k2 − 5

10
,

(63)

where the constants a, b and a1 are the same as in (13), function α̂i = κβ̂i for i = 1, 2.
With the choice of d = 1−k2

2 and using (15), we can obtain the following nontrivial special
solutions:


ξ̌1 = a2 tan a2(x − t)− b1

2
, β̌1 = (b1 − 1)a2 tan a2(x − t) +

b1 − 1 − k2

2
,

ξ̌2 = − a3 coth a3(x − t)− b2

2
, β̌2 = (1 − b2)a3 coth a3(x − t) +

b2 − 1 − k2

2
,

ξ̌3 = − 3a1 tanh a1(x − t), β̌3 = 3a1 tanh a1(x − t)[2a1 tanh a1(x − t) + 1] − 5k2 + 1

2
,

ξ̌4 = − 3a1 coth a1(x − t), β̌4 = 3a1 tanh a1(x − t)[−2a1 tanh a1(x − t) + 1] − 5k2 + 1

2
,

ξ̌5 = 1

−x + t
± k, β̌5 = ±2k − 1

−x + t
− (k ± 1)2

2
,

(64)

Here, the constants a1, a2, a3, b1, b2 are similar to those that appeared in (15), function
α̌i = κβ̌i for i = 1, 2, . . . , 5.

Setting the integral constant d = 1
2 , it follows


ξ̆1 = b3

2

(
tan

b3

2
(x − t) − 1

)
, β̆1 = b3

2
tan

b3

2
(x − t) +

b3 − 1

2
,

ξ̆2 = −3

x − t
, β̆2 = − 6

(x − t)2
+

3

x − t
− 1

2
,

(65)

where b3 is an arbitrary nonzero constant, and functions ᾰi = κβ̆i for i = 1, 2.
From (63)–(65), we can derive nine sets of nonlocal symmetry generators. To our

knowledge, these nonlocal symmetry generators have not been found in previous literatures.
It is difficult for us to construct explicit solutions from these nine sets of nonlocal symmetry
generators by repeating the former procedure. Explicit solutions obtained from these new
symmetry generators need further investigation.

3. Conclusion

In summary, the nonlocal symmetry and explicit solutions of a partial differential equation,
which can be written as a conservation law, are considered in this paper. The Burger equation
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is used as an example to illustrate details. Nineteen sets of nonlocal symmetry generators and
many new explicit solutions of the Burgers equation are obtained. Many results have not been
touched in previous literatures. Just like Boiti et al [14] state, finding nonlocal symmetries is
crucial to find not only how the original dependent variable (such as u in the paper) changes, but
also how the new dependent variable (like v in the present paper) changes along the symmetry.
This is precisely demonstrated by the work of this paper. Although the solutions obtained in
this paper satisfy the famous Cole–Hopf transformation, it is really difficult for us to obtain
them directly from the heat equation via the Cole–Hopf transformation. The method which
can be used to construct an explicit solution from nonlocal symmetry generators (63)–(65) is
worth further study.
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